EQUATIONS OF PERTURBED MOTION OF AN EQUATORIAL SATELLITE IN THE "ACTION - ANGLE" VARIABLES

PMM Vol. 43, No. 2, 1979, pp. 364-366
M. Kh. KHASANOVA
(Dushanbe)
(Received March 15, 1978)

A problem of computing the canonical action - angle variables for an equatorial satellite of an axisymmetric plant is considered, and the Kolmogorov [1] theorem used to study the problem of preserving the conditionally periodic motions of the satellite using a recent form of the equation of perturbed motion.

Let us introduce a rectangular coordinate system centered on the planet, the $x y$ plane of which coincides with the equatorial plane of the planet. If the planet has axial symmetry about the polar axis, then the force function is determined by the formula [2]

$$
\begin{align*}
& U=\frac{f M}{r}\left[1-\sum_{k=2}^{\infty} \frac{J_{k} R^{k}}{r^{k}} P_{k}(\sin \varphi)\right] \tag{1}\\
& \sin \varphi=z / r, \quad r^{2}=x^{2}+y^{2}+z^{2}
\end{align*}
$$

where M is the Earth's mass and R its radius.
Introducing the polar r, θ-coordinates in the equatorial plane, we can write the force function for the perturbed problem in the form

$$
\begin{equation*}
V=V(r)+\varepsilon F(r, \theta, \varepsilon) \tag{2}
\end{equation*}
$$

where ε is a small parameter. Putting $\varepsilon=0$, we obtain the unperturbed motion. Retaining in (2) the second zonal harmonic only, we obtain

$$
V=\frac{f M}{r}-\frac{f M J_{2} R^{2}}{2 r^{3}}
$$

Let us consider the Hamilton - Jacobi equation for the case of an artificial satellite moving in the equatorial plane of the axisymmetric planet. Since θ is a cyclic coordinate we have for the conjugated impulse $\partial W / \partial \theta=\alpha_{2}=$ const, and the complete integral of the Hamilton - Jacobi equation

$$
\begin{aligned}
& W=\int A(r) d r+\alpha_{2} \theta \\
& A(r)=\left(\frac{1 M J_{2} R^{2}}{r^{\delta}}-\frac{\alpha_{2}^{2}}{r^{2}}-\frac{2 f M}{r}+2 \alpha_{1}\right)^{1 / 2}
\end{aligned}
$$

where we restrict ourselves to the case of $\alpha_{1}<0$ (α_{1} is the constant of the energy integral).

Next, we pass from the canonical elements α_{1}, α_{2} to other canonical impulses, integrating over the period of variation of r and θ. This yields

$$
I_{1}=\oint A(r) d r, \quad I_{2}=\oint \alpha_{2} d \theta
$$

The quantities I_{1} and I_{2} are the action variables and the coordinate θ will vary, during the period of motion (when $\alpha_{2} \neq 0$) over the range $0 \leqslant \theta \leqslant 2 \pi$. The quantity l_{1} can be rewritten in the form

$$
\begin{align*}
& I_{1}=\int_{m_{1}}^{m_{2}}[P(u)]^{1 / 2} d u \tag{3}\\
& P(u)=b u^{3}-\alpha_{2} u^{2}-c u+2 \alpha_{1}=0 \tag{4}\\
& \left(u=1 / r, c=2 f M, b=f M J_{2} R^{2}\right)
\end{align*}
$$

where the limits of integration are positive roots of (4).
Let us investigate the motion of the satellite in the case when the initial values satisfy the conditions

$$
\left|u_{0}\right|<\sqrt{c / b}, \quad \dot{\theta} \neq 0, \quad \alpha_{2} \neq 0 \quad\left(u_{0}=1 / r_{0}\right)
$$

Let us assign to the argument u of the polynomial $P(u)$ the values $-\sqrt{c / b}$, $u_{0},+\sqrt{c / b},+\infty$. It is clear that

$$
\begin{aligned}
& P\left(-\sqrt{\frac{c}{b}}\right)=-\frac{c \alpha_{2}^{2}}{b}+2 a_{1}<0, \quad P\left(u_{0}\right)=u_{0}^{\cdot 2} \geqslant 0 \\
& P\left(+\sqrt{\frac{c}{b}}\right)=-\frac{c a_{2}^{2}}{b}+2 a_{1}<0, \quad P(+\infty)>0
\end{aligned}
$$

From this it follows that all three roots of the polynomial $P(u)$ are real. One of the roots, namely u_{3}, is always real and greater than $\sqrt{c / b}$. The remaining two roots u_{1} and u_{2} lie in the interval $(-\sqrt{c / b},+\sqrt{c / b})$ and we have $-\sqrt{c / b}$ $<u_{1} \leqslant u_{0} \leqslant u_{2}<\sqrt{c / b}<u_{3}$.
When $\alpha_{1}<0$, the equation (4) has either one, or three real roots.
The case of three real roots $0<u_{1}<u_{2}<u_{3}$ corresponds to the actual initial velocities imparted to the planet's satellite, and in the case of real motion we have $P(u) \geqslant 0$. The coordinates u assume the values which lie within the interval u_{1} $\leqslant u \leqslant u_{3}$, or within $u_{2} \leqslant u<\infty$, and the first case is of practical interest.

The integral (3) can be expressed in terms of the complete elliptic integrals of the first, second and third kind. Denoting by u_{θ} the smallest root of the polynomial $P(u)$ and $Q=4 a b m, B=a b u_{0}-\alpha_{k}, G=4 a \alpha_{1}, N=4 a c$, we find

$$
\begin{equation*}
I_{1}=\frac{4 \eta_{2}}{\sqrt{a b}}\left[\frac{Q \mathbf{K}(k)-Q \mathbf{E}(k)}{k^{2}}+B \mathbf{K}(k)+\left(\frac{G}{u_{0}{ }^{2}}-\frac{N}{u_{0}}\right) \Pi(k,-n)\right] \tag{5}
\end{equation*}
$$

where $\mathbf{K}(k), \mathbf{E}(k)$ and II $(k,-n)$ are the complete elliptic integrals of the first, second the third kind respectively. Their modulus and parameter are given by the formulas $k=\xi_{1} / \xi_{2}$ and $n=m / u_{0}$ where ξ_{1} and ξ_{2} are roots of the corresponding fourth degree equation.

Now we can solve the equation (5) for the initial element α_{1} of the orbit, obtaining the latter in the form of a power series in k^{2}. For $k=0$ we have the approximate expression

$$
\begin{aligned}
& \alpha_{1}=\left(I_{1}-L I_{2}-S\right) \Phi^{-1} \\
& L=\frac{\eta_{2}^{2}}{2 \sqrt{a b}}, \quad \Phi=\frac{2 \eta_{2} \pi}{\sqrt{a b}}\left(1-\eta_{2}^{2} u_{0}\right)
\end{aligned}
$$

$$
S=\frac{4 \eta_{2}}{\sqrt{a b}}\left(\frac{\pi p}{4}+\frac{1}{2} a b \pi u_{0}-\frac{N \pi}{2 u_{0}}\right)
$$

Let us consider the transformation $\left(\alpha_{1}, \alpha_{2}\right) \rightarrow\left(I_{1}, I_{2}\right)$ achieved by means of the relation (5) and the formula $I_{2}=2 \pi \alpha_{2}$. The transformation will be single-valued, since

$$
\frac{\partial\left(I_{1}, I_{2}\right)}{\partial\left(a_{1}, a_{2}\right)}=2 \pi \frac{\partial I_{1}}{\partial a_{1}} \neq 0
$$

for $\alpha_{1} \neq 0$ and $u_{0} \neq u_{1}$. The functions $\alpha_{1}=\alpha_{1}\left(I_{1}, I_{2}\right), \quad \alpha_{2}=I_{2} / 2 \pi$ can therefore be assumed known.

Let us now introduce the generating function of the canonical transformation

$$
\begin{aligned}
& W=\int_{r^{\circ}}^{r}\left[a_{1}\left(I_{1}, I_{2}\right)-\frac{2 f M}{\tau}-\frac{I_{2}{ }^{2}}{2 \pi^{2} \tau^{2}}+\frac{f M J_{2} R^{2}}{\tau^{3}}\right]^{1 / 2} d \tau+\frac{I_{2}}{2 \pi} \theta= \\
& \quad \bar{W}\left(r, \theta, I_{1}, I_{2}\right)
\end{aligned}
$$

which defines the canonical action -angle variables

$$
p_{1}=\frac{\partial \bar{W}}{\partial r}, \quad p_{2}=\frac{\partial \bar{W}}{\partial \theta}=\frac{I_{2}}{2 \pi}, \quad \omega=\frac{\partial \bar{W}}{\partial I_{1}}, \quad \omega_{2}=\frac{\partial \bar{W}}{\partial I_{3}}
$$

Let us turn our attention to a perturbed motion with an analytic perturbation function $H_{1}=H_{1}\left(I_{1}, I_{2}, \omega_{1}, \omega_{2}\right), \quad 2 \pi$-periodic in ω_{i}. If the Hessian H_{0} is not identically equal to zero, then according to the Kolmogorov theorem the tori $I_{1}=$ const and $I_{2}=$ const are not appreciably deformed provided that the quantity $\left|H_{1}\right|$ is sufficiently small and the conditionally periodic perturbed motion differs slightly from the unperturbed motion. In the present case we have

$$
\left|\frac{\partial^{2} H_{0}}{\partial I_{i} \partial I_{j}}\right|=\left|\frac{\partial^{2} \alpha_{1}}{\partial I_{i} \partial I_{j}}\right|=\left|\frac{\partial\left(v_{1}, v_{2}\right)}{\partial\left(I_{1}, I_{2}\right)}\right| \neq 0
$$

where $v_{1}=\partial \alpha_{1} / \partial I_{1}, v_{2}=\partial \alpha_{1} / \partial I_{2}$ are known functions of the variables I_{1} and
I_{2}. Obviously, in the general case they are rationally incommensurable.

> Since

$$
\frac{\partial^{2} \alpha_{1}}{\partial I_{1}{ }^{2}}=-\frac{\partial^{2} I_{1} / \partial \alpha_{1}{ }^{2}}{\left(\partial I_{1} / \partial a_{1}\right)^{3}}
$$

where $\partial^{2} I_{2} / \partial \alpha_{1}^{2} \neq 0$ and $\partial I_{1} / \partial \alpha_{1} \neq 0$, and hence $\partial v_{1} / \partial I_{1} \neq 0$, the condition $I_{0}\left(I_{1}, I_{2}\right) \equiv 0$ holds in the region in question. Then, provided that the perturbing function εH_{1} is sufficiently small in modulo, we can assert, in accordance with the Kolmogorov theorem on preserving the conditionally periodic motions in Hamiltonian systems, that when the Hamiltonian undergoes a small change [1], then the perturbed motion of the satellite of an axisymmetric planet will be conditionally periodic.

The applicability of the theoretical conclusions obtained depends on the magnitude of the small parameter.

Obviously, in the case of an axisymmetric planet a sufficient condition for preserving the conditionally periodic motions of the satellite can be formulated. This case (see (2)) has the corresponding potential of two fixed centers and the potential of the Barrar's problem [3]. In other cases additional estimates are needed.

REFERENCES

1. Kolmogorov, A. N. On preserving the conditionally periodic motions when the Hamiltonian function undergoes small variations. Dokl. Akad. Nauk SSSR, Vol. 98, No. 4, 1954.
2. Khas a nova, M. Kh. Qualitative study of properties of motion of a satellite of a spheroidal planet. PMM Vol. 41, No. 3, 1977.
3. De min, V, G. Motion of an Artificial Satellite in a Noncentral Gravity Field. Moscow, "Nauka", 1968.
